0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB7 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x > z && y > z) {
x--;
y--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 12 rules for P and 5 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
1253_0_main_Load(x1, x2, x3, x4, x5) → 1253_0_main_Load(x2, x3, x4, x5)
Cond_1253_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_1253_0_main_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
1253_0_main_Load(x1, x2, x3, x4) → 1253_0_main_Load(x2, x3, x4)
Cond_1253_0_main_Load(x1, x2, x3, x4, x5) → Cond_1253_0_main_Load(x1, x3, x4, x5)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x2[0] < x1[0] && x2[0] < x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] + -1 →* x1[0])∧(x2[1] →* x2[0])∧(x0[1] + -1 →* x0[0]))
(1) (&&(<(x2[0], x1[0]), <(x2[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1253_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1253_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(2) (<(x2[0], x1[0])=TRUE∧<(x2[0], x0[0])=TRUE ⇒ 1253_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1253_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(3) (x1[0] + [-1] + [-1]x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x2[0] + [bni_10]x1[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(4) (x1[0] + [-1] + [-1]x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x2[0] + [bni_10]x1[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(5) (x1[0] + [-1] + [-1]x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x2[0] + [bni_10]x1[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10 + bni_10] + [bni_10]x1[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10 + bni_10] + [bni_10]x1[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(8) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10 + bni_10] + [bni_10]x1[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(9) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10 + bni_10] + [bni_10]x1[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(10) (COND_1253_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1253_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥1253_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))∧(UIncreasing(1253_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥))
(11) ((UIncreasing(1253_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧[(-1)bso_13] ≥ 0)
(12) ((UIncreasing(1253_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧[(-1)bso_13] ≥ 0)
(13) ((UIncreasing(1253_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧[(-1)bso_13] ≥ 0)
(14) ((UIncreasing(1253_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1253_0_MAIN_LOAD(x1, x2, x3)) = [-1]x2 + x1
POL(COND_1253_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
1253_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])
1253_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_1253_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])
COND_1253_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1253_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer